Adhesion is prerequisite, but alone insufficient, to elicit stem cell pluripotency.
نویسندگان
چکیده
Primitive mammalian neural stem cells (NSCs), arising during the earliest stages of embryogenesis, possess pluripotency in embryo chimera assays in contrast to definitive NSCs found in the adult. We hypothesized that adhesive differences determine the association of stem cells with embryonic cells in chimera assays and hence their ability to contribute to later tissues. We show that primitive NSCs and definitive NSCs possess adhesive differences, resulting from differential cadherin expression, that lead to a double dissociation in outcomes after introduction into the early- versus midgestation embryo. Primitive NSCs are able to sort with the cells of the inner cell mass and thus contribute to early embryogenesis, in contrast to definitive NSCs, which cannot. Conversely, primitive NSCs sort away from cells of the embryonic day 9.5 telencephalon and are unable to contribute to neural tissues at midembryogenesis, in contrast to definitive NSCs, which can. Overcoming these adhesive differences by E-cadherin overexpression allows some definitive NSCs to integrate into the inner cell mass but is insufficient to allow them to contribute to later development. These adhesive differences suggest an evolving compartmentalization in multipotent NSCs during development and serve to illustrate the importance of cell-cell association for revealing cellular contribution.
منابع مشابه
Jun‐Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency
Embryonic stem cells (ESC) are able to give rise to any somatic cell type. A lot is known about how ESC pluripotency is maintained, but comparatively less is known about how differentiation is promoted. Cell fate decisions are regulated by interactions between signaling and transcriptional networks. Recent studies have shown that the overexpression or downregulation of the transcription factor ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملExpression of Spermatogonial and Pluripotency Markers in Spermatogonial Stem Cells after Treatment with Different Culture Factors
Background: As condition and component of culture determine fate map of spermatogonial stem cells (SSCs), the aim of this study was to evaluate of growth factors GDNF, LIF and RA on proliferation and differentiation of SSC. Materials and Methods: SSCs were cultured in two groups: The first group GDNF and LIF and the second group RA. The number of clumps and colony formation was monitored dur...
متن کاملCdh2 stabilizes FGFR1 and contributes to primed-state pluripotency in mouse epiblast stem cells
The cell adhesion molecule Cadherin 2 (Cdh2) plays important roles in somatic cell adhesion, proliferation and migration. Cdh2 is also highly expressed in mouse epiblast stem cells (mEpiSCs), but its function in these cells is unknown. To understand the function of Cdh2 in mEpiSCs, we compared the expression of pluripotency-related genes in mEpiSCs and mouse embryonic stem cells (mESCs) after e...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 20 شماره
صفحات -
تاریخ انتشار 2007